
Adaptive Layout
Gene Whitaker

@gene_whitaker
@bombingbrain

!
gene@bombingbrain.com

mailto:gene@bombingbrain.com

What is Adaptive Layout?
• iOS 8’s new default layout system

• De-couples UI and device screen dimensions

• Dynamically Adapts UI to varying screen sizes

• Tightly coupled with Auto-Layout

• Defines layout in terms of UI objects and constraints…  
- on the objects themselves (eg. size, ratio)  
- relative to other objects (eg. spacing)  
- relative to parent (eg. pinning, scaling)

• Uses Size Classes to generically describe view layouts

• Views should be designed to conform to size class combinations, rather than
specific pixel dimensions  

Why Adaptive Layout?
…and by extension, why auto layout?

• Greatly reduces the need for complex, error-prone layout code

• Define layout visually in Interface Builder

• Simplified (in many cases automatic) rotation layout handling

• Universal Storyboards (eliminates need for device-specific
XIBs/Storyboards)

• Flexibility to support a wider range of screen sizes

• iOS evolving as a platform…

…a wider range of devices

Size Classes
• Generically describe layout in terms of horizontal

and vertical size

• Three enumerations - Regular, Compact,
Unspecified

• Replaces UIInterfaceOrientation and
UIInterfaceIdiom

• Design for size class combinations instead

Mapping Size Classes to Current Device Lineup

HORIZONTAL VERTICAL DEVICE

regular regular iPad 
(both orientations)

compact regular iPhone
(portrait)

regular compact iPhone 6+
(landscape)

compact compact iPhone 4, 5, 6 (4.7-inch)
(landscape)

Traits and TraitCollections
• Horizontal and vertical size class are identified as traits

• Traits can be accessed in a UITraitCollection, which is implemented in a Trait Environment

• New protocol implemented in UIWindow, UIScreen, UIViewController, UIView, and
UIPresentationController

• UITraitCollection Structure: 
Horizontal size class - Regular / Compact 
Vertical size class - Regular / Compact 
User interface idiom - iPhone / iPad / iPod Touch 
Display scale - 1.0 / 2.0

• Can be accessed to determine current size class (self.traitCollection)  
Example: 
 
UIUserInterfaceSizeClass horizontalSizeClass =
self.traitCollection.horizontalSizeClass;  
if (horizontalSizeClass == UIUserInterfaceSizeClassCompact) {  
" //Do some specialized work 
}

Trait Environment

• Subviews inherit trait
collections of the parent

• Parent View Controllers can
override the trait collections of
child view controller

• Allows custom layout in
certain scenarios

Overriding Trait Collection Example - UISplitViewController

iPad

Master Detail

Re
gu

la
r

Regular

Re
gu

la
r

RegularCompact

iPhone

Master

Re
gu

la
r

Compact

Re
gu

la
r

Compact

Detail

Re
gu

la
r

Compact

Overriding Trait Collection
UITraitCollection *customTraits = [UITraitCollection
traitCollectionWithVerticalSizeClass:UIUserInterfaceSizeClassCompact];

UITraitCollection *combinedTraits = [UITraitCollection
traitCollectionWithTraitsFromCollections:@[self.traitCollection, customTraits]];

[self setOverrideTraitCollection:combinedTraits
forChildViewController:self.childViewController];

Horizontal Regular

Vertical Regular

Vertical iPad

Scale 2.0

self.traitCollection

Horizontal (unspecified)

Vertical Compact

Vertical (unspecified)

Scale (unspecified)

customCollection

+

Horizontal Regular

Vertical Compact

Vertical iPad

Scale 2.0

combinedTraits

Responding to Changes in
Trait Collection

• Use willTransitionToTraitCollection:withTransitionCoordinator:
and traitCollectionDidChange: to add any custom
animations/transitions and completions

Adaptive Segues

• Interface Builder now includes Adaptive Segues

• Show

• Show Detail

• Present Modally

• Popover

Showing and Presenting
View Controllers

• Adaptively shows/presents view controllers appropriately based on containing view
controller/parent trait environment

• Examples:

• Navigation Controller

• SplitViewController

• Popovers

• Alerts

• Child view controllers do not need to be aware of their parent view controller to show or
present another view controller

• Use [self showViewController:animated:] instead of [self.navigationController
pushViewController:animated:]

• Use [self presentViewController:animated:] for popovers and action sheets

Interface Builder in Xcode 6
• Size class support, live previews, layout previews

• Allows most layout to be done visually, minimizing code

• Default generic view defines layouts that should work in
in any width, and any height

• Use the size class selector to setup size class-specific
objects

• UI Objects, constraints, and some properties can be
installed (or not installed) per size class combination

Interface Builder in Xcode 6
Items that are size class “aware”

• UIView objects

• Constraint objects

• Constraint constants

• Font property on many objects (new!)

What is adaptable per size class

• Size/position of views (by altering constraints constants)

• Presence/absence of view

• Presence/absence of constraints

• Font face/size

Limitations/Warnings
NOT size class-aware:

• Most properties of UI objects (eg. label color; button text; collection view layout attributes)

• Properties of constraints (priority/multiplier)

Solution

• Handle in code

• Use separate objects

• Use size class-specific constraints

Other Warnings

• Be careful which size class is selected when editing

• When a specific size class is selected - items added are exclusive to that size class

• Be careful which version of Xcode is opening the project

• Xcode 5 will undo all of your size class customizations and save the storyboard!

• Use source control and commit your storyboard often

Consideration - Orientation-specific Layout

• In iOS 8, drastic differences in layout between orientation
are discouraged

• Example - iPad, size class is “regular, regular” for both
orientations, no distinction

• What about minor customizations based on orientation?
How to implement?

• Use viewWillTransitionToSize:withTransitionCoordinator: to
intercept orientation change 
- Handle custom layout in code 
- Override size class of child view controller

Asset Library

• Asset library is size-class aware in Xcode 6

• Allows separate versions of an image to be used
per size class

More information…

WWDC 2014 Session Videos:

216 - Building Adaptive Apps with UIKit 
228 - A Look Inside Presentation Controllers  
411 - What’s New in Interface Builder

Apple Developer Pre-Release Documentation:

http://tinyurl.com/size-classes

http://tinyurl.com/size-classes

Demo

Demo Notes - Adaptive
Popover

• The Info button at the top right demonstrates iOS
8’s adaptive popover presentation

• The code to add the “Done” button in the
iPhone adaptation is in
RootTableViewController - see
prepareForSegue and the
UIPopoverPresentationControllerDelegate
methods

Demo Notes - Adaptive
Layout Example

• The RootTableViewContoller is itself an example of
adaptive layout - see how the subtitle is only shown when
running in a regular horizontal size class (iPad)

• The adaptive layout example demonstrates what you can
do in IB without even implementing any custom code

• Play around with the different size classes in IB to see
the differences, what’s enabled/disabled in each size
class combination

• Special thanks to Joe for being a good sport

Demo Notes - Complex
Adaptive Layout

• The complex adaptive layout example shows how you can override size classes of
child view controllers

• In OverrideNavigationController, the
viewWillTransitionToSize:withTransitionCoordinator: method overrides the size
class of its child view controller depending on the size being transitioned to.

• The regular width, compact height size class combination is used to define my
layout for a large device (iPad) in landscape.

• Try commenting out viewWillTransitionToSize:withTransitionCoordinator: and
setCustomLayoutForSize methods and run this view on an iPad to see the
difference when the override is not in place.

• In OverrideViewController, un-comment
willTransitionToTraitCollection:withTransitionCoordinator: to see an example the
child view controller detecting and responding to changes in its trait collection. In
this case, I’m changing how the setlist/notes view animates during the transition.

