Adaptive Layout

Gene Whitaker

Bombinng Brain
I N T E R A C T 1 V =

@gene_whitaker
@bombingbrain

gene@bombingbrain.com

mailto:gene@bombingbrain.com

What is Adaptive Layout”

e iOS 8’s new default layout system

* De-couples Ul and device screen dimensions
 Dynamically Adapts Ul to varying screen sizes
« Tightly coupled with Auto-Layout

e Defines layout in terms of Ul objects and constraints...
- on the objects themselves (eq. size, ratio)
- relative to other objects (eg. spacing)
- relative to parent (eg. pinning, scaling)

e Uses Size Classes to generically describe view layouts

* Views should be designed to conform to size class combinations, rather than
specific pixel dimensions

Why Adaptive Layout?

...and by extension, why auto layout?

Greatly reduces the need for complex, error-prone layout code
Detine layout visually in Interface Builder

Simplified (in many cases automatic) rotation layout handling

Universal Storyboards (eliminates need for device-specific
X|Bs/Storyboards)

Flexibility to support a wider range of screen sizes

IOS evolving as a platform. ..

2

John Appleseed
~ + L |
End Aok Mute
V. A Q) i

Size Classes

Generically describe layout in terms of horizontal
and vertical size

Three enumerations - Regular, Compact,
Unspecified

Replaces UllnterfaceOrientation and
Ullnterfaceldiom

Design for size class combinations instead

Mapping Size Classes to Current Device Lineup

HORIZONTAL VERTICAL DEVICE

iPac
~ (both orientations)

compact regular IFAone
P J ~ (portrait)
regular compact Phone 6+
J P ~ (landscape)
' iPhone 4, 5, 6 (4.7-inch)
compact compact

é (landscape)

Traits and TraitCollections

* Horizontal and vertical size class are identified as traits
* Traits can be accessed in a UlTraitCollection, which is implemented in a Trait Environment

* New protocol implemented in UIWindow, UlScreen, UlViewController, UlView, and
UlPresentationController

* UlTraitCollection Structure:
Horizontal size class - Regular / Compact
Vertical size class - Regular / Compact
User interface idiom - iPhone / iPad / iPod Touch
Display scale-1.0/2.0

* Can be accessed to determine current size class (self.traitCollection)
Example:

UlUserInterfaceSizeClass horizontalSizeClass =

self.traitCollection.horizontalSizeClass;

if (horizontalSizeClass == UIUserInterfaceSizeClassCompact) {
//Do some specialized work

}

Tralt Environment

e Subviews inherit trait
collections of the parent

e Parent View Controllers can
override the trait collections of
child view controller

* Allows custom layout in
certain scenarios

UlIScreen

UIWindow

UlViewController

UlView

Regular

Overriding Trait Collection Example - UISplitViewController

IPag IPhone

Regular Compact

Compact

Regular
Regular

Overriding Trait Collection

UITraitCollection *customTraits = [UITraitCollection
traitCollectionWithVerticalSizeClass:UIUserInterfaceSizeClassCompact];

UITraitCollection xcombinedTraits = [UITraitCollection
traitCollectionWithTraitsFromCollections:@[self.traitCollection, customTraits]];

[self setOverrideTraitCollection:combinedTraits
forChildViewController:self.childViewController];

self.traitCollection customCollection combinedTraits
Horizontal Regular Horizontal (unspecified) Horizontal Regular
Vertical Regular Vertical Vertical
__ + s~
Vertical iIPad Vertical (unspecified) Vertical iPad

..

Responding to Changes in
Trait Collection

* Use willTransitionToTraitCollection:with TransitionCoordinator:
and traitCollectionDidChange: to add any custom
animations/transitions and completions

Adaptive Segues

Intertface Builder now includes Adaptive Segues
Show

Show Detall

Present Modally

Popover

Showing and Presenting
View Controllers

« Adaptively shows/presents view controllers appropriately based on containing view
controller/parent trait environment

 Examples:
« Navigation Controller
« SplitViewController
* Popovers
e Alerts

e Child view controllers do not need to be aware of their parent view controller to show or
present another view controller

« Use [self showViewController:animated:] instead of [self.navigationController
pushViewController:animated:]

o Use [self presentViewController:animated:] for popovers and action sheets

Interface Builder in Xcode 6

Size class support, live previews, layout previews
Allows most layout to be done visually, minimizing code

Detault generic view defines layouts that should work in
In any width, and any height

Use the size class selector to setup size class-specific
objects

Ul Objects, constraints, and some properties can be
installed (or not installed) per size class combination

Interface Builder in Xcode 6

ltems that are size class “aware”

« UlView objects
« Constraint objects
« Constraint constants

* Font property on many objects (new!)

What is adaptable per size class

« Size/position of views (by altering constraints constants)
« Presence/absence of view

» Presence/absence of constraints

 Font face/size

| imitations/Warnin

NOT size class-aware:

» Most properties of Ul objects (eg. label color; button text; collection view layout attributes)
* Properties of constraints (priority/multiplier)
Solution
« Handle in code
» Use separate objects
» Use size class-specific constraints

Other Warnings

» Be careful which size class is selected when editing

* When a specific size class is selected - items added are exclusive to that size class
» Be careful which version of Xcode is opening the project

« Xcode 5 will undo all of your size class customizations and save the storyboard!

» Use source control and commit your storyboard often

S

Consideration - Orientation-specific Layout

* |IniOS 8, drastic differences in layout between orientation
are discouraged

« Example - iPad, size class is “regular, regular” for both
orientations, no distinction

e \What about minor customizations based on orientation?
How to implement?

e Use viewWillTransitionToSize:withTransitionCoordinator: to
intercept orientation change
- Handle custom layout in code
- Override size class of child view controller

Asset Library

 Asset library Is size-class aware In Xcode ©

* Allows separate versions of an image to be used
per size class

More information. ..

WWDC 2014 Session Videos:

216 - Building Adaptive Apps with UIKIt
228 - A Look Inside Presentation Controllers
411 - What's New In Interface Builder

Apple Developer Pre-Release Documentation:

http://tinyurl.com/size-classes

http://tinyurl.com/size-classes

Demo

Demo Notes - Adaptive
Popover

* The Info button at the top right demonstrates iI0S
8's adaptive popover presentation

 [he code to add the "Done” button in the
IPhone adaptation is in
RootTableViewController - see
oreparefForSegue and the
UJIPopoverPresentationControllerDelegate
methods

Demo Notes - Adaptive
L ayout Example

 The RootlableViewContoller is itself an example of
adaptive layout - see how the subtitle is only shown when
running in a regular horizontal size class (iPad)

* The adaptive layout example demonstrates what you can
do in IB without even implementing any custom code

* Play around with the different size classes in IB to see
the differences, what’s enabled/disabled in each size
class combination

e Special thanks to Joe for being a good sport

Demo Notes - Complex
Adaptive Layout

 The complex adaptive layout example shows how you can override size classes of
child view controllers

* In OverrideNavigationController, the
viewWillTransitionToSize:withTransitionCoordinator: method overrides the size
class of its child view controller depending on the size being transitioned to.

* The regular width, compact height size class combination is used to define my
layout for a large device (iPad) in landscape.

e Try commenting out viewWillTransitionToSize:withTransitionCoordinator: and
setCustomlLayoutForSize methods and run this view on an iPad to see the
difference when the override is not in place.

* In OverrideViewController, un-comment
willTransitionToTraitCollection:withTransitionCoordinator: to see an example the
child view controller detecting and responding to changes in its trait collection. In
this case, I'm changing how the setlist/notes view animates during the transition.

